Explaining the ‘anomalous’ distribution of *Echinodium* (Bryopsida: Echinodiaceae): Independent evolution in Macaronesia and Australasia

Michael Stecha,*, Manuela Sim-Simb, M. Glória Esquívelc, Susana Fontinh, Ray Tangneye, Carlos Lobof, Rosalina Gabrig, Dietmar Quandth

aNationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands
bUniversidade de Lisboa, Faculdade de Ciências de Lisboa, Departamento de Biologia Vegetal (DBV), Centro de Biologia Ambiental (CBA), 1749-016 Lisboa, Portugal
cCentro de Botânica Aplicada à Agricultura, ISA, 1349-017 Lisboa, Portugal
dCentro de Estudos da Macaronésia, Serviço do Parque Natural da Madeira, Quinta do Bom Sucesso, 9050-251 Funchal, Madeira, Portugal
eDepartment of Biodiversity and Systematic Biology, National Museum and Gallery, Cardiff, CF10 3NP, UK
fJardim Botânico da Madeira, Quinta do Bom Sucesso, 9050-251 Funchal, Madeira, Portugal
gDepartamento de Ciências Agrárias, CITAA, Universidade dos Açores, 9701-851 Angra do Heroísmo, Açores, Portugal
hInstitut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany

Received 28 March 2007; accepted 25 February 2008

Abstract

The peculiar disjunction between Macaronesia and Australasia of the morphologically isolated pleurocarpous moss genus *Echinodium* is one of the most prominent questions in bryology. *Echinodium* as traditionally circumscribed comprises six extant species, four restricted to the Macaronesian archipelagos and two confined to the Australasian/Pacific regions. Molecular phylogenetic analyses based on plastid *trnL_UAA* intron and nuclear ribosomal ITS sequences indicate that *Echinodium* is polyphyletic and split into three groups. Three of the four Macaronesian species (*E. spinosum* and the single island endemics *E. renauldii* and *E. setigerum*) are closely related to each other and treated as *Echinodium* s.str. (Echinodiaceae). Further clarification of the relationships of *Echinodium* s.str. with *Orthostichella*, a segregate of Lembophyllaceae, is needed. The remaining Macaronesian species, *E. prolixum*, is transferred to *Isothecium* (Lembophyllaceae); this systematic position is also strongly supported by leaf characters. The two Australasian species, *E. hispidum* and *E. umbrosum*, are molecularly unrelated to the Macaronesian species and are transferred to *Thamnobyrum* in the Neckeraeaceae. While the molecular data suggest that the peculiar distribution pattern of ‘*Echinodium*’ is an artefact, the striking morphological similarity observed in Macaronesian and Australasian species cannot be dismissed. Possible explanations are: (i) parallel morphological evolution of the ‘*Echinodium* habit’ in Macaronesia and Australasia, or (ii) retention of a set of plesiomorphic characters in non-related groups in relict habitats, the Macaronesian laurel forest and the austral temperate rain forests, respectively. Of these hypotheses, the evolutionary parallelism hypothesis seems more plausible for several reasons, which are discussed.

© 2008 Gesellschaft für Biologische Systematik. Published by Elsevier GmbH. All rights reserved.

Keywords: Biogeography; Echinodiaceae; ITS; Molecular relationships; Pleurocarpous mosses; *trnL_UAA* intron

*Corresponding author. E-mail address: stech@nhn.leidenuniv.nl (M. Stech).
Introduction

The Echinodiaceae are a small family of pleurocarpous mosses, comprising only one genus, *Echinodium* Jur., with six extant species (Churchill 1986). *Echinodium* shows one of the most peculiar disjunct distribution patterns (Fig. 1), which puzzled bryologists for more than a century. Four species are restricted to the Macaronesian archipelagos, *E. prolixum* (Mitt.) Broth. to the Azores and Madeira, *E. spinosum* (Mitt.) Jur. to Madeira and Canary Is., *E. renauldii* (Card.) Broth. endemic to the Azores, and *E. setigerum* (Mitt.) Jur. endemic to Madeira. The remaining two species are confined to the Australasian region, *E. hispidum* (Hook. f. & Wils.) Reichardt in Eastern Australia, New Zealand and New Caledonia, and *E. umbrosum* (Mitt.) A. Jaeger in New Zealand, reaching northwards to Fiji (Churchill 1986). A separate, nowadays extinct species, *E. savicziae* A. Abr. & I. Abr., was described based on fossils from the Pliocene of Georgia (Abramov and Abramov 1958) and the Miocene of Poland (Lancucka-Srodoniowa 1996). These and further fossil finds from the Eocene in Baltic and Saxon amber (Frahm 2004) as well as from the Pleistocene of Tasmania (Jordan and Dalton 1995) indicate an evolutionary old age and a wider distribution of the genus *Echinodium* in the Tertiary (Fig. 1). This is supported by the predominant occurrence of the extant *Echinodium* species in relict forest types, the laurel forest (Laurisilva) in Macaronesia, a presumed remnant of the Tertiary flora (e.g., Capelo et al. 2005), and southern temperate rain forests to semi-tropical forests in Australasia. Because of their limited distribution areas all four Macaronesian species are either considered rare or threatened in European or worldwide red lists (ECCB 1995; IUCN 2002), with *E. renauldii* and *E. setigerum* classified as “Vulnerable” by IUCN (2002).

The *Echinodium* species have been well characterised morphologically and ecologically (e.g., Churchill 1986; Hedenäs 1992; Gabriel 1994; Dierßen 2001; Fontinha et al. 2001, 2006). The genus *Echinodium* is easily recognized by the combination of rather stiff, irregularly pinnate or subdendroid plants, generally long subulate and plicate leaves with partially to fully bistratose
margins, percurrent to excurrent costae, and short leaf cells. Despite this characteristic ‘Echinodium habit’, Churchill (1986) pointed out that the subulate, plicate leaves and bistratose margins are the only morphological synapomorphies, and hypothesised that the species could belong to different genera. Furthermore, the systematic position of Echinodiaceae within the pleurocarpous mosses remains ambiguous. Echinodiaceae have been placed near various pleurocarpous families in the former Isobryales (e.g., Fleischer 1909–1923; Brotherus 1925; Walther 1983) or Hypnobryales (especially the Thuidiaceae; e.g., Robinson 1971; Vitt 1984; Buck and Vitt 1986). Interestingly, none of these authors questioned the monophyly of the family Echinodiaceae or its taxonomic rank. First doubts on the systematic position and rank were put forward by Hedenäs (1992) in his flora of Madeiran pleurocarpous mosses, where he included the Macaronesian Echinodium species in Lembophyllaceae. Echinodium hispidum was resolved as sister to Limbella tricostata (Sull.) Müll. Hal. ex E.B. Bertram (Neckeraceae) in the cladistic analyses of morphological characters by Hedenäs (1995), but relationships of these two species to other isobryalean taxa remained ambiguous. Based on molecular phylogenetic analyses, the two main pleurocarpous orders (Isobryales/Neckerales/Leucodontales and Hypnobryales/Hypnales) were merged into one, Hypnales (Buck et al. 2000). Resolving familial relationships among pleurocarpous mosses with confidence, however, remains a challenging task (see, e.g., Goffinet and Buck 2004). Echinodiaceae have not been challenged on molecular grounds, as only one species (E. umbrosum) has been included in previous molecular studies of pleurocarpous mosses (Buck et al. 2000; De Luna et al. 2000). These studies were based on different combinations of plastid DNA regions, rps4 and trnL–F (Buck et al. 2000) or rps4, trnL–F and rbcL (De Luna et al. 2000), respectively, and indicated a closer relationship of Echinodium umbrosum to either Thannobryum (Buck et al. 2000) or Lembophyllum (De Luna et al. 2000). However, Thannobryum was missing in the analyses of De Luna et al. (2000), and the trees in both studies lacked significant support for most clades.

The present study aims at providing the first comprehensive molecular investigation of the enigmatic genus Echinodium. Based on sequences of the plastid trnL–UAA intron and the more variable internal transcribed spacers (ITS) 1 and 2 of the nuclear ribosomal DNA (nrDNA), we aim (i) to test the monophyly of Echinodium and to evaluate the significance of the morphological characters used to define the genus, (ii) to clarify systematic and evolutionary relationships of the Echinodium species, and (iii) to develop hypotheses that could explain the peculiar extant distribution pattern.

Material and methods

Plant material

Material of the Macaronesian Echinodium species was collected during field trips to the Azores and Madeira by the authors and by T. Pfeiffer (Greifswald). Material of E. hispidum was collected by J.-P. Frahm (Bonn) in New Zealand in the course of the BRYO AUSTRAL project. In addition, herbarium material of Echinodium from B, LISU, MADJ, and the private herbarium of A. Schäfer-Verwimp (Herdwangen-Schoénach) was used. Voucher information and GenBank accession numbers for the Echinodium samples and further newly sequenced samples are listed in Table 1. Sequences from other pleurocarpous species were either taken from our previous studies or from GenBank (detailed information is available upon request), resulting in a data matrix comprising 62 specimens.

DNA extraction, PCR and sequencing

All plant material was thoroughly cleaned with distilled water and partly by ultrasonic treatment. Extraction of DNA, PCR amplification and manual or automated sequencing of the plastid trnL–UAA intron and the nuclear ribosomal ITS1–5.8S–ITS2 region was performed as described in Quandt et al. (2007) and Sim-Sim et al. (2005).

Alignment, sequence analysis and phylogenetic reconstructions

Based on the criteria laid out in Kelchner (2000) and Quandt and Stech (2005), the DNA sequences were manually aligned using PhyDE© v0.983 (Müller et al. 2006). Phylogenetic reconstructions using maximum parsimony (MP) or maximum likelihood (ML) principles were performed with PAUP 4.0b10 (Swofford 2002). Three species of the Hookeriales were used as outgroup representatives, according to the sister group relationship of Hookeriales and Hypnales inferred in recent molecular analyses (e.g., Buck et al. 2000).

Heuristic searches under parsimony were implemented using random sequence addition with 10 replicates and employing the default settings otherwise. In addition, the data set was analyzed using a simple indel coding (SIC) strategy (Simmons and Ochoterena 2000) as implemented in SeqState (Müller 2004a). SeqState generates a ready-to-use nexus file containing the sequence alignment with an automatically generated indel matrix appended. This file can be either executed directly in PAUP or submitted to PRAP (Müller 2004b) for ratchet and decay analyses. Heuristic bootstrap searches under parsimony were performed with 1000
replicates, 10 random addition cycles per bootstrap replicate and the same options in effect. Decay values as further measurement of support for the individual clades were obtained using PRAP in combination with PAUP, employing the following ratchet settings: 10 random addition cycles of 200 iterations each with 25% upweighting of the characters in the iterations.

Maximum likelihood analyses were executed assuming a general time reversible model (GTR + \(\Gamma + I \)), and a rate variation among sites following a gamma distribution (four categories represented by mean). GTR + \(\Gamma + I \) was chosen as the model that best fits the data by Modeltest v3.6 (Posada and Crandall 1998) employing the Windows interface MTgui (Nuin 2005). The settings proposed by Modeltest v3.6 were executed in PAUP 4.0b10. For the combined data set the following settings were used: BaseFreq = (0.2053 0.2743 0.2806), Nst = 6, Rmatrix = (1.0000 3.3710 0.8191 0.8191 4.4120), Shape = 0.6679, and Pinvar = 0.3827. Likelihood bootstrap searches were performed with 500 replicates using the ‘fast bootstrap’ option (bootstrapping without branch-swapping).

For further measurement of clade support posterior probabilities were calculated using MrBayes V3.1 (Huelsenbeck and Ronquist 2001). As in the ML analysis, the GTR model of nucleotide substitution was employed, assuming site-specific rate categories following a gamma distribution. The a priori probabilities supplied were those specified in the default settings of the program. Posterior probability (PP) distributions of trees were created using the Metropolis-coupled Markov chain Monte Carlo (MCMC) method and following the search strategies suggested by Huelsenbeck et al. (2001, 2002). To allow for possible deviating substitution models for the different regions, the data set was divided into four partitions. Four runs with four chains (10^6 generations each) were run simultaneously, with the temperature of the single heated chain set to 0.2. Chains were sampled every 10 generations and the respective trees written to a tree file. Calculations of the consensus tree and of the posterior probability of clades were performed based upon the trees sampled after the chains converged (we used 25% as default). Consensus topologies and support values from the different methodological approaches were compiled and drawn using TreeGraph 1.0 (Müller and Müller 2004).

Results

Sequence characterisation and alignment

Features characteristic for the pleurocarpous Hypnales, such as low sequence variation and a short middle part of the intron (stem-loop region P8 in the respective secondary structure; cf. Quandt and Stech 2005)
were also observed in all *Echinodium* species. The length of the *trnL* intron in *Echinodium* was either 265 nucleotides (nt) (*E. hispidum*, *E. prolixum*, *E. umbrosum*), the typical length among pleurocarpous mosses, or 254 nt (*E. renauldii*, *E. setigerum*, *E. spinosum*), i.e., the latter species were characterised by an 11 nt deletion located in P8. The *trnL* intron alignment of the 62 compiled sequences of pleurocarpous mosses comprised 1317 positions.

In bryophytes, the nuclear ribosomal spacers (ITS1 and ITS2) are generally more variable than the *trnL* intron, with a higher degree of length variation (e.g., Stech et al. 2003; Vanderpoorten et al. 2006). In *Echinodium*, sequence lengths of the ITS1-5.8S-ITS2 region ranged from 674 nt (*E. renauldii*, *E. setigerum*, *E. spinosum*) to 690 nt (*E. prolixum*) and 701 nt (*E. hispidum*, *E. umbrosum*), respectively. The ITS sequence alignment of all included pleurocarpous mosses comprised 1317 positions.

Of the 1674 positions in the combined *trnL*/ITS alignment, 445 (26.6%) were variable, and 277 (16.5%, or 62.2% of the variable positions) were parsimony-informative. The simple indel coding approach yielded another 269 parsimony-informative characters, resulting in a total of 546 parsimony-informative characters.

Phylogenetic analysis

The MP analysis employing the parsimony ratchet retained 6 trees (length 1091, CI 0.529, RI 0.708, RC 0.374). After inclusion of the indel matrix, four trees were retained (length 1863, CI 0.575, RI 0.732, RC 0.421), of which the strict consensus is shown in Fig. 2, with bootstrap support values (BS) and decay indices (DI) indicated on the branches. Values above the branches are based upon the sequence matrix only, whereas the values below were obtained when the indel matrix was included in the analyses. In the ML analysis, three optimal trees were found (ln *L* = −8073.31622), which were identical except for slight variation within the poorly resolved branch of *Echinodium renauldii*, *E. setigerum*, and *E. spinosum*. One of these trees is shown in Fig. 3, with ML bootstrap values indicated above the branches and significant (≥94) posterior probabilities (PP) below. For most branches no or only slight differences in PP values were observed when the indel matrix was included in the analysis. However, three branches were only significantly supported without indel coding, whereas eight branches received significant PP values only with indel coding.

In all analyses the *Echinodium* species are divided into three separate clades. The Macaronesian species *E. renauldii*, *E. setigerum*, and *E. spinosum* are closely related to each other (99–100% BS, DI 13–16, PP 100) (Figs. 2 and 3), but relationships to other genera and families are ambiguous. A sistergroup relationship with *Orthostichella* is indicated in the parsimony analysis with the indel matrix included, but weakly supported (58% BS, Fig. 2). The remaining Macaronesian species, *E. prolixum*, is nested within *Isothecium* in the well-supported Lembophyllaceae clade. In particular, a clade comprising *E. prolixum* and *I. myosuroides* Brid. receives maximal BS and PP support. The closely related samples of *E. hispidum* and *E. umbrosum* (95–98% BS, DI 4–6, PP 100) are nested within *Thamnobryum* in the Neckeraeaceae. Their sistergroup relationship with *T. pandum* (Hook. f. & Wilson) I.G. Stone & G.A.M. Scott from New Zealand and *T. fasciculatum* (Sw. ex Hedw.) I. Sastre from the Neotropics is less well supported.

Discussion

The molecular data provide clear evidence for polyphyly of *Echinodium* and thus support the suspicion of Churchill (1986) that some *Echinodium* species might belong to other genera. Three molecular groups are significantly supported: the first comprises three of the four Macaronesian species (*E. renauldii*, *E. setigerum*, and *E. spinosum*), the second the remaining Macaronesian species *E. prolixum* (together with *Isothecium myosuroides*), and the third the Australasian species *E. hispidum* and *E. umbrosum*. Similar results were obtained by a preliminary analysis of a smaller data set using *rbcL* sequences (data not shown).

The species of the first group are closely related, not only at the molecular level, but also morphologically (cf. Table 2). In particular *E. spinosum* and *E. setigerum* are sometimes difficult to distinguish at first sight (Fontinha et al. 2001). Furthermore, all three species are largely confined to shady and humid narrow valleys of the laurel forest; *E. renauldii* was also collected at lower altitudes at cave entrances (González-Mancebo et al. 1991). Concerning the substrates, *E. spinosum* occasionally occurs on soil or as an epiphyte, whereas *E. renauldii* and *E. setigerum* are strictly epilithic except...
for one collection of the former species on a stem base. On Madeira island, *E. spinosum* and especially *E. setigerum* are linked to the *Clethro arboresae–Ocoteetum foetentis* vascular plant community (Capelo et al. 2000), the latter being restricted to few valleys of well-conserved laurel forest. Possibly, *E. renauldii* and *E. setigerum* evolved from *E. spinosum* under specific environmental conditions in epilithic microhabitats in the laurel forests of Madeira and the Azores, respectively. As *Echinodium spinosum* is the type species of the genus, and because no close relationships with other included pleurocarpous genera and families were observed in the molecular trees (Figs. 2 and 3), the three species represent what remains of *Echinodium* (Echinodiaceae). Their unsupported sistergroup relationship with *Orthostichella* in the parsimony analysis (Fig. 2) needs further investigation of a larger set of pleurocarpous taxa. *Orthostichella* is a segregate of Lembophyllaceae that was placed in Neckeraceae in a recent morphological revision (Allen and Magill 2007), but probably constitutes a separate family according to the molecular data.

Echinodium prolixum is distinguished from the other Macaronesian (and Australasian) species not only at the molecular level, but also morphologically by the leaf shape, the costa ending noticeably before the leaf apex (cf. Table 2), and by its wider ecological amplitude. In Madeira and the Azores, it is the most abundant species of the genus and occurs on several substrates, such as rock, soil, and bark (see, for example, Gabriel and Bates 2005). In Madeira, *E. prolixum* can be found in the laurel forest, in heathlands at higher elevations (*Vaccinio padfoli–Eriecetum maderinicoae* and *Polysticho falcinelli–Eriecetum arboresae* vascular plant communities: Capelo et al. 2000) as well as in semi-natural forest types. For this species, the affinity with the Lembophyllaceae proposed by Hedénäs (1992) is well supported by the present molecular analyses. By noting morphological similarities between high mountain phenotypes of *E. prolixum* and *Isothecium holtii* Kindb. in Madeira, Hedénäs (1992) also provided morphological support for the transfer of *E. prolixum* to *Isothecium*, which is made here (see Taxonomy section). Thus, the evolutionary history of *E. prolixum* has to be discussed in the course of phylogenetic analyses of *Isothecium* and the Lembophyllaceae in general. However, recent molecular data were partly incongruent with the morphological circumscription of *Isothecium* species (Draper et al. 2007), and further molecular analyses including *E. prolixum* have to be carried out to infer its affinities and taxonomic status.

The position of the Australasian species *E. hispidum* and *E. umbrosum* within the *Thamnobryum* clade (Figs. 2 and 3) is in accordance with the molecular study of Buck et al. (2000), which, however, included only *E. umbrosum*, but is more difficult to interpret on morphological grounds. A comparison of gametophytic characters indicates that *E. hispidum* and *E. umbrosum* are somewhat intermediate between *Echinodium* s.str. and *Thamnobryum* (Table 2). Ecologically, *E. hispidum* does share with many *Thamnobryum* spp. the preference for wet and aquatic habitats. At least for this species, the long subulate leaves with partially to fully bistrose margins enhancing mechanical stability may be an adaptation to aquatic environments, a phenomenon also found in *Thamnobryum*, e.g., in the Madeiran endemic *T. fernandesii* Sérgio (cf. Hedénäs 1992). However, as with *E. prolixum*, the affinities of *E. umbrosum* and *E. hispidum* have to be treated in the context of a more detailed phylogenetic analysis of the Neckeraceae, which is beyond the scope of this paper.

The present molecular study bears important consequences for the understanding of the evolutionary history of *Echinodium* and the explanation of the extant distribution pattern. Churchill (1986) noted that the Macaronesian–Australasian disjunct distribution of *Echinodium* as a natural taxon would be exceptionally noteworthy, but that questions over the monophyly of the genus meant that biogeographic conclusions should be treated with caution. In fact, the polyphyly of *Echinodium* indicated by the present molecular data clearly suggests that the distribution pattern based on the morphology of Macaronesian and Australasian plants is an artefact of independent evolutionary events. Nevertheless, the novel occurrence of a suite of morphological characters not typical for taxa included in well-supported clades amongst the Hypnales pleurocarps requires some explanation. This could imply either that a set of plesiomorphic characters (irregularly pinnate to subdendroid branching, subulate leaves with percurrent to excurrent costae, short leaf cells) was retained in unrelated groups in relict habitats in Macaronesia and Australasia, or that parallel morphological evolution of the ‘Echinodium habit’ took place in both geographic regions. Of these hypotheses, the evolutionary parallelism scenario seems more plausible for several reasons. Firstly, the genus *Bescherellia* of the Hypnodendrales is morphologically very similar to *Echinodium*, except that the costa is differentiated in cross-section, and also occurs in similar habitats. However, *Bescherellia* is regarded as quite derived within the hypnodendroid pleurocarps, which are sister to the homocostate pleurocarps to which the Hypnales belong (cf. Bell et al. 2007). Secondly, according to molecular dating (Newton et al. 2007), the diversification of major lineages within the Hypnales leading to extant genera had already taken place by the Early to Late Cretaceous (mainly between ca. 130 and 80 mya) and therefore much earlier than the oldest fossil records of *Echinodium* (cf. Fig. 1). Furthermore, none of the families that may represent basal lineages in the Hypnales according to molecular phylogenies, e.g.,
Fontinalaceae, **Fabroniaceae**, **Plagiotheciaceae**, or **Stereophyllaceae** (e.g., Buck et al. 2000; Tsubota et al. 2004; Ignatov et al. 2007), show the combination of characters attributed to the 'Echinodium habit'. Thirdly, the *Echinodium* fossils from Tasmania are of only Pleistocene age, and at least the extant Australasian *Echinodium* species could be the result of a rather recent parallel evolution in aquatic environments. However, as they are related with *Thamnobryum* according to the present molecular data, *E. hispidum* and *E. umbrosum*,
Table 2. Comparison of gametophytic characters in *Echinodium*, *Isothecium*, and *Thamnobryum*

<table>
<thead>
<tr>
<th>Taxon character</th>
<th>Echinodium s.str.</th>
<th>Echinodium hispidum</th>
<th>Thamnobryum spp.</th>
<th>Echinodium prolixum</th>
<th>Isothecium spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching of secondary stems</td>
<td>Irregularly pinnate or sub-dendroid</td>
<td>Irregularly pinnate</td>
<td>Irregularly pinnate to often frondose or dendroid</td>
<td>Irregularly pinnate or sub-dendroid</td>
<td>Irregularly pinnate or sub-dendroid</td>
</tr>
<tr>
<td>Leaf shape (leaves of secondary stems)</td>
<td>Subulate from ovate or triangular base</td>
<td>Broadly linear-lanceolate or subulate from ovate or triangular base</td>
<td>Oval to lanceolate</td>
<td>Broadly lanceolate to ovate-triangular</td>
<td>Broadly ovate to long-triangular</td>
</tr>
<tr>
<td>Leaf plication</td>
<td>Plicate</td>
<td>Plicate or indistinct</td>
<td>Not plicate</td>
<td>Plicate</td>
<td>Not plicate</td>
</tr>
<tr>
<td>Upper leaf margins</td>
<td>Entire (awn toothed in E. spinosum)</td>
<td>Entire or serrulate</td>
<td>Often serrate</td>
<td>Serrulate</td>
<td>Serrulate</td>
</tr>
<tr>
<td>Leaf lamina</td>
<td>Margins bi- or pluristratose, other lamina uni- or bistratose</td>
<td>Ovate to lanceolate</td>
<td>Uni- to variously bi- or pluristratose</td>
<td>Sometimes small portions bistratose</td>
<td>Unistratose</td>
</tr>
<tr>
<td>Shape of median lamina cells</td>
<td>Isodiametric to oblong</td>
<td>Isodiametric to oblong</td>
<td>Isodiametric to rhomboidal</td>
<td>Rhomboidal to linear</td>
<td>Rhomboidal to linear</td>
</tr>
<tr>
<td>Ornamentation of median lamina cells</td>
<td>Smooth</td>
<td>Smooth or papillose</td>
<td>Smooth or papillose</td>
<td>Smooth</td>
<td>Smooth or abaxially prorate</td>
</tr>
<tr>
<td>Alar cells</td>
<td>In small and often auriculate group</td>
<td>Not differentiated</td>
<td>Few, not sharply delimited</td>
<td>Basal and alar cells similarly differentiated (in stem leaves alar groups more similar to Isothecium)</td>
<td>In indistinct auriculate group</td>
</tr>
<tr>
<td>Costa</td>
<td>Long-excurrent</td>
<td>Percurrent to long-excurrent</td>
<td>Subpercurrent</td>
<td>Ending in upper 1/3 of leaf, well below leaf apex</td>
<td>Ending at mid-leaf or in upper half of leaf</td>
</tr>
</tbody>
</table>

like *Thamnobryum* in general, probably represent the most primitive elements within Neckeraceae (e.g., Enroth 1994).

Taxonomy

Isothecium prolixum (Mitt.) Stech, Sim-Sim, Tangney & D. Quandt, comb. nov.

Thamnobryum umbrosum (Mitt.) Stech, Sim-Sim, Tangney & D. Quandt, comb. nov.

Thamnobryum umbrosum var. *glauco-viride* (Mitt.) Stech, Sim-Sim, Tangney & D. Quandt, comb. nov.

Acknowledgements

Sincere thanks are due to W. Frey, L. Hedenäs, T. Pfeiffer and three reviewers for comments on the manuscript; to H. Nowak-Krawietz (B), J.-P. Frahm and A. Schäfer-Verwimp for providing plant material; and to B. Giesicke for technical assistance. Funding by the Deutsche Forschungsgemeinschaft (DFG, QU 153/3-1), the Deutscher Akademischer Austauschdienst (DAAD, PPP project D/03/40407) and the Portuguese project POCI/AGR/57487/2004 is greatly acknowledged.

References
